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An investigation was made of the boundary layer of a weakly raref ied gas close to a cyl inder  
cr i t ical  point with suction and exhaust. 

Let us consider  a laminar  boundary layer  of a homogeneous raref ied gas close to a cr i t ical  point of a 
permeable  cylinder.  

The boundary- layer  equations are  as follows: 
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where the x and y axes are  directed along the surface and along a no rma l  to it respectively.  

The slip and tempera ture  jump conditions a re  valid on the surface of the cylinder.  If the raref icat ion 
effect is ignored the hydrodynamic problem is se l f -s imulat ing [2] in the case of constant mass  f low-rate of 
gas on the wall. It is assumed that this is the case here.  Then the boundary conditions on the surface can 
be writ ten as follows: 

2 - - ~  1/ n ~ 0_u 
u =  - - "  | /  7 ~ -  9 I (7 - -1 )h  " Og ' 

h = h  w-{- 2 - - a e  7 V ~ P~ Oh 
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2-- (re V ~Th 4r 2 (7 - -  1) v, ,or = const. 

Away from the surface the values of u and h should approach their  corresponding values for the f ree-  
s t r eam flow: 

for y -~ 
~J=U~, h = h ~ .  (3) 

The velocity distribution in potential flow close to a cylinder cr i t ical  point in the case of two dimen- 
sional f low-past  is given by the formula 
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UQo ~ Zx,  

where A > 0. As a result  of U~ changing with the x coordinate and the t e rm u(0p/0x) remaining unchanged 
in the energy equation, the enthalpy hoe is given by the express ion 

A~x ~ 
h ,  = h o - -  - -  

2 

Since the dynamic viscosi ty  coefficient p is a function of the absolute tempera ture  T (or of enthalpy 
h) the equation of motion cannot be solved independently of the energy equation. However, by using the 
linear relation between/~ and h [3], in accordance with which 

I% ho ' \ T o }  T~  + T s  ' 

where T s is~ the Sutherland constant, the equation can be made autonomous. 

The Dorodnitsyn change of var iables:  

= X ,  

is now introduced and also instead of v the function 
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The following notation is used: 
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Equations (1) and the boundary conditions (2) and (3) are  made dimensionless by introducing the variables 
X =7 ~ 0 ,  $ = A~/~rcpT0, ~ = h/h0, and the flow function 

~p = l / C v o A  ~tp (;~). (4) 

Omitting the ba r  over  the dimensionless enthalpy one obtains (primes denote differentiation with re-  
spect  to X): 

t2 qD," -~- r = ~ --1, 

O~h Pr t~ '  Oh Oh (5) 0~. 2 ~ + Prr ~ = - -  Pr t~2cp ' '  + Pr t ~ ' ;  

for X=0 

for ~--* oo 

where 

q~ = B, ~' = k l ( D "  , 
Oh -!-. ~, 

h = h w + a t  h -ff~ 

,0,2 
(p '= 1, h = l - -  - - ,  
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(6) 

B =  v~ k, = k V Ah~ ~,v0 
~ C n A  ' Cv----~ ' ~ = c~,-----~o 

Thus in spite of slipping the equation of motion remains  self-s imulat ing.  This is only charac te r i s t ic  
for a flow in the vicinity of a cylindrical  point since in this case the coordinate X is independent of ~ ; how- 
ever ,  for a boundary layer  on a semi-infinite plate there is no self-s imulat ion if, for example, the effects 
of raref icat ion are  taken into account [4]. 
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The p a r a m e t e r  k 1 with an a c c u r a c y  up to a mul t ip l i e r  is equal to the ra t io  of the ave rage  length of free 
path l 0 to the boundary layer  th ickness  5, which is constant  c lose to a c r i t i ca l  point. It  is advisable ,  t he re -  
fore,  when solving the f i r s t  equation of (5) that a s e r i e s  expansion be used with r e spec t  to the constant  smal l  
p a r a m e t e r ,  namely:  

9 (~) = % (~) + k i ~  (~) + - . .  (7) 

Only the f i r s t  two t e r m s  a re  retained in the expansion (7), since in the boundary  layer  equations only t e r m s  
of the o rde r  of sma l lnes s  of lo/6 a re  kept. 

By subst i tut ing (7) in the f i r s t  equation of (5) and the cor responding  boundary conditions in (6) the 
following equations and boundary  conditions a r e  obtained for  the f i r s t  and second approximat ion:  

,,, z 
% + % q r  

% (0) ~ B, (p~ (0) = 0, (8) 

< ( ~ )  = 1; 

ho~" + q:,:tqo,~ - -  2q)~q~ 2 :+- q~% = O, 

% (0)]= 0, % (0) = ~ (0), (9) 

~ ( ~ )  = 0 

The relat ion (8) i s a  F o l k n e r - S c a n  equation for  a pe rmeab le  sur face  (m = 1). The resu l t s  of n u m e r -  
ical  in tegrat ion of that  equation for  var ious  values  of Bcan be found in [5]. 

A solution of Eq. (9) sa t i s fy ing the boundary  conditions is given by 

%-, = q~i �9 (10) 

The fr ic t ion on the cyl inder  sur face  is now found: 

[ 1 Tw =poU~ ~ 0  qJ;(O) 1--k~ r ' (11) 

where  Re 0 = U~ x/v 0. The f i r s t  of the components ,  containing kl, is due to the joint e f fec t  of s l ip  and sur face  
pe rmeab i l i ty ,  the second component  is due to s i ip only, i .e. ,  in this case  the fr ict ion depends on the sl ip a lso  
in the case  of an i m p e r m e a b l e  cyl inder  in con t ras t  to the sur face  fr ict ion on the plate [4]. 

It  follows f rom (l l )  that  for  kl ~ 0 for  any Bthe su r face  fr ict ion is s m a l l e r  than for  k t = 0, since ~o~'(0) 
> 0 and B~o~'(0) + 1 = -~&"(0) > 0; however ,  in the case  of exhaust  both components ,  containing kl, a r e  of the 
s a m e  sign; for  suction, however ,  theyhave  opposite s igns.  The re fo re ,  the sur face  fr ict ion is cons iderably  
more  reduced by the sl ip in the case  of exhaust  than in the case  of suction (see Table  1). 

The solution of the second equation of the s y s t e m  (5), which is the energy  equation, is sought in the 
fo rm of a sum,  

h (~, X) Zt (X) + r (X). (12) 

By subst i tut ing the sum (12) into the ene rgy  equation and the cor responding  boundary conditions in 
(6), the following equation and boundary conditions a r e  obtained for  the functions • (X) and • (k): 

x~ + pr ~xl = o, 

x, (o) + ax'~ (o) = b, 
X l  ( o ~ )  = 1; 

X~ + Pr qoX~ _ 2Prq0,X~ = _ Pr ~ '  + Pr ~', i 
x~ (o) + ax; (o) = o, } 

1 I 
z~ (~o) _ 2 ' ! 

where  a - - - a k  t, b =h w +ft. 

A solution of Eq. (13) can be wri t ten as  follows: 

HI = C1 ~- Ca j' exp {--  Pr .f ~gd~ 1 } d~. 
0 o 
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TABLE 1. Values of Surface Frict ion and Heat Flow Towards Cyl- 
inder  Surface as Dependent on Rareficat ion Rate and T r a n s v e r s e  
Velocity 

1,9265 

0 

- 1 ,  lbS 

k~ 

o 
0,1 
0 
0,1 
0 
0,1 

�9 ~ 1 / -RZ-  ~ 1 2 
--~-ooU ~ r C 

5,216 
4,011 
2,465 
2,265 
1,373 
1,337 

/-Reo qw . p r r _ ~  - 
ooU~ Cp To 

0,4672 
0,3898 
0,1576 
0,1520 
0,0264 
0,0299 

The constants C 1 and C 2 a re  determined by using the boundary conditions (13): 

CI=  1--C~I~, C~= 1--b 

where 

: f 
0 0 

It should be noted before  solving Eq. (14) that for  large h(h > k 0, where X 0 can be found f rom the 
tables in [5]) the function ~o 1 can be represented  with a large degree  of accu racy  as  

% = Z §  

(the constant E is also evaluated f rom the tables);  then f rom (7) one obtains 

By introducing the change of variable 

z = P--r (~ + E + k~), t = i z / l f 2 ,  

the following asymptot ic  equation is obtained f rom (14): 

d2~ -2t dx~ _~ 4X 2 = __ 2. 
dt ~ dt 

Its solution, which sat isf ies  the condition X2 (~) = - 1 / 2 ,  is given by [3] 

1 
x~ = N (z ~ + l )  I (z) - -  - - ,  

2 

where  N is an undetermined constant and 

I (z) = i exp( z~ q-{--1) ~z ~} dz. 
z 

By eliminating N from X2 and • one finds the boundary condition for  some Xl(X 1 > X0): 

vvr- [4zj(zl) exp{--z~}] [ 1 ]  = 2(z~q-1) I(zx) X'2(ki). 
2(z~§ 1) X~(~'I) ~ E ' 

Equation (14) together  with the boundary condition for k=0  and the condition (15) was solved by the 
t r i a l  method on the digital computer  Minsk-22. 

The actual heat flow to the cyl inder  surface ,  the heat f rom the frict ion forces  being taken into account, 
is as follows: 

P~176 V C [C~-4- O2X~ (0) + P r k l ~  ' (0)] . 
qw - Pr 

x~ V ~  and q~ Pr for  the a i r  a re  given In Table 1 the values of the quantit ies 1 2 poU~%To 
y ~oU.  
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for  aT =aE =1, T w =400~ T O =600~ they co r respond  to two values of B found in [5] (the heat  flow is 
computed for ~ =0.5). I t  can be seen f rom Table  1 that  the inclusion of the sl ip conditions in suction and 
exhaust  leads to a g r e a t e r  change in the heat  flow than in the case  of impe rmeab le  sur face .  

In conclusion it should be  mentioned that  in the case  of exhaust  the appearance  of s l ip and og 
t e m p e r a t u r e  jump have a much g r e a t e r  effect  on the heat  flow and on the sur face  fr ict ion than in the case  of 
i m p e r m e a b l e  su r face .  

u and v 
p and p 
C p  
Y 
Re and P r  

o~r and ~E 

NOTATION 

a re  the lengthwise and c r o s s  s t r e a m  veloci ty  components;  
a r e  the gas densi ty  and p r e s s u r e ;  
is the gas specif ic  heat  capaci ty  at  constant  p r e s s u r e ;  
is the adiabat ic  index; 
a re  the Reynolds and Prandt l  numbers ;  
is the k inemat ic  v i scos i ty  coefficient;  
a r e t h e  accommodat ion  coeff icients  of tangential  impulse  and of energy.  

S u b s c r i p t s  

w and 0 r e f e r  to p a r a m e t e r s  on the cyl inder  sur face  and at  a c r i t i ca l  point of ex te rna l  flow respec t ive ly .  

2. 
3. 
4. 
5. 
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