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An investigation was made of the boundary layer of a weakly rarefied gas close to a cylinder
critical point with suction and exhaust.

Let us consider a laminar boundary layer of a homogeneous rarefied gas close to a critical point ofa
permeable cylinder.

The boundary-layer equations are as follows:
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where the x and y axes are directed along the surface and along a normal to it respectively.

The slip and temperature jump conditions are valid on the surface of the cylinder. If the rarefication
effect is ignored the hydrodynamic problem is self-simulating [2] in the case of constant mass flow-rate of
gas on the wall. It is assumed that this is the case here. Then the boundary conditions on the surface can
be written as follows:
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Away from the surface the values of u and h should approach their corresponding values for the free~

stream flow:
for y—

w=Us h=h,. (3)

The velocity distribution in potential flow close to a cylinder critical point in the case of two dimen-
sional flow-past is given by the formula
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Uy, = Ax,
where A > 0. As a result of U, changing with the x coordinate and the term u(dp/9x) remaining unchanged
in the energy equation, the enthalpy he is given by the expression

242
B = hy— A

Since the dynamic viscosity coefficient i is a function of the absolute temperature T (or of enthalpy
h) the equation of motion cannot be solved independently of the energy equation. However, by using the
linear relation between p and h [3], in accordance with which
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where Tg isi the Sutherland constant, the equation can be made autonomous.

The Dorodnitsyn change of variables:
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is now introduced and also instead of v the function
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Equations (1) and the boundary conditions (2) and (3) are made dimensionless by introducing the variables

A=nVA/Cy, & =AEt/Ve Ty, h=h/hy, andthe flow function
P =V CvA Ep(h). (4)

Omitting the bar over the dimensionless enthalpy one obtains (primes denote differentiation with re-
spect to A):
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Thus in spite of slipping the equation of motion remains self-simulating. This is only characteristic
for a flow in the vicinity of a cylindrical point since in this case the coordinate XA is independent of £; how-
ever, for a boundary layer on a semi-infinite plate there is no self-simulation if, for example, the effects
of rarefication are taken into account [4].
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The parameter k; with an accuracy up to a multiplier is equal to the ratio of the average length of free
path [ to the boundary layer thickness 6, which is constant close to a critical point. It is advisable, there-
fore, when solving the first equation of (5) that a series expansion be used with respect to the constant small
parameter, namely:

M=o (M +he, W)+ ... ()

Only the first two ferms are retained in the expansion (7), since in the boundary layer equations only terms
of the order of smallness of [,/6 are kept.

By substituting (7) in the first equation of (5) and the corresponding boundary conditions in (6) the
following equations and boundary conditions are obtained for the first and second approximation:
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The relation (8) isa Folkner— Scan equation for a permeable surface (m =1). The results of numer-~
ical integration of that equation for various values of Bean be found in [5].

A solution of Eq. (9) satisfying the boundary conditions is given hy

Py = ;. (10)
The friction on the cylinder surface is now found:
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where Rey = U, x/¥. The first of the components, containing k;, is due to the joint effect of slip and surface
permeability, the second component is due tosliponly, i.e., in this case the friction depends on the slipalso
in the case of an impermeable cylinder in contrast to the surface friction on the plate [4].

it follows from (11) that for k; # 0 for any Bthe surface friction is smaller than for k; =0, since <p1 0)
>0 and B401 ©0) +1=—q "(0) > 0; however, in the case of exhaust both components, containing ky, are of the
same sign; for suction, however, theyhave opposite signs. Therefore, the surface friction is considerably
more reduced by the slip in the case of exhaust than in the case of suction (see Table 1).

The solution of the second equation of the system (5), which is the energy equation, is sought in the
form of a sum,
R(8, &) = %y (A) + 0%, (A). (12)

By substituting the sum (12) into the energy equation and the corresponding boundary conditions in
(6), the following equation and boundary conditions are obtained for the functions x; A\) and x, (A):
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where a = ~aky, b =hy, +5.

A solution of Eq. (13) can be written as follows:
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0
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TABLE 1. Values of Surface Friction and Heat Flow Towards Cyl-
inder Surface as Dependent on Rarefication Rate and Transverse

Velocity

/Re Re,
B ke ——p.,um1 3 TPl o5 To c,,T,. e/ T

0 5,216 0,4672

1,9265 0,1 4,011 0.3898

0 2465 0.1576

0 0,1 2,965 0.1520

. 0 1.373 0.0264

—1,198 0,1 1,337 0.0299

The constants C; and C, are determined by using the boundary conditions (13):
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It should be noted before solving Eq. (14) that for large A > )y, where Ay can be found from the
tables in [5]) the function ¢; can be represented with a large degree of accuracy as

@ =A+E
(the constant E is also evaluated from the tables); then from (7) one obtains
@=A+E-k.

By introducing the change of variable
2=vVPr(A+E+R), t=izV2,
the following asymptotic equation is obtained from (14):
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Its solution, which satisfies the condition x, (x) =—1/2, is given by [3]
1
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where N is an undetermined constant and
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By eliminating N from x, and x;, one finds the boundary condition for some A, (A; > Ag):
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Equation (14) together with the boundary condition for A=0 and the condition (15) was solved by the
trial method on the digital computer Minsk~22.

The actual heat flow to the cylinder surface, the heat from the friction forces being taken into account,
is as follows:
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for or =0p = 1, Tw =400°K, T, =600°K; they correspond o two values of B found in [5] (the heat flow is
computed for ¢ =0.5). It can be seen from Table 1 that the inclusion of the slip conditions in suction and
exhaust leads to a greater change in the heat flow than in the case of impermeable surface.

In conclusion it should be mentioned that in the case of exhaust the appearance of slip and of
temperature jump have a much greater effect on the heat flow and on the surface friction than in the case of
impermeable surface.

NOTATION
uand v are the lengthwise and cross stream velocity components;
p and p are the gas density and pressure;
Cp_ is the gas specific heat capacity at constant pressure;
Y is the adiabatic index;
Re and Pr  arethe Reynolds and Prandtl numbers;
v is the kinematic viscosity coefficient;

o7 and o  aretheaccommodation coefficients of tangential impulse and of energy.

Subscripts

wand 0 refer to parameters on the cylinder surface and at a critical point of external flow respectively.
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